November 29th, 2023 | Posted in Air Cleaners
This is an extremely porous material. It has been described as a microporous inert carbon matrix. Activated carbon is generated in a two-step process. First a material high in carbon such as wood, coal, peat, or in case or activated carbon for removal of airborne odor and hydrocarbon contaminants, coconut shells. This material is heated to 600 to 900 degrees Celsius in an oxygen-deficient atmosphere creating a carbon “char”. In the second step the “char” is heated again to nearly 1200 degrees Celsius in the presence of argon or nitrogen and exposed to steam and oxygen, to produce an interconnected series of “holes” or pores inside the carbon. The internal surface area created by this treatment borders on the unbelievable. Values of 700 to 1500 m2 per gram are often quoted. Compare this area to that of a tennis court at 261 m2 and it becomes even more difficult to comprehend how that much internal area can be incorporated in such a small volume of activated carbon. Nonetheless a vast number of microscopic pores are created when the carbon is treated, and these incredibly tiny pores are the secret to how activated carbon works to remove contaminants. (It should be noted that the terms “Activated Carbon” and “Activated Charcoal” are considered synonymous.)
Activated Carbon does not “soak it up like a sponge.” That “soaking up” process is called absorption (note that the word is spelled with a “b”). In absorption, the liquid fills the pore spaces in the sorbent material and is not limited to the surface area of the sorbent bed.
By contrast, activated carbon works by adsorption (spelled with a “d”). In adsorption the contaminants cling to walls of the micropores and do not fill up the pores brimful as is the case with absorption. Adsorption works by weak electromagnetic interaction between transient dipoles. We need to define some terms to make sense of the previous sentence. A “dipole” is, in our case, a molecule that has a positive and a negative pole. That raises a question: “How can a hydrocarbon contaminant, which is usually defined as being “non-polar” be a dipole?
The answer to that question lies in the use of the word “transient.” Something that is transient passes especially quickly into and out of existence. Since electrons are constantly hovering from one side to another of an atom (and therefore a molecule) those movements are creating tiny very temporary (“transient”) positive and negative charge poles (“dipoles”) in the molecules to be collected. Similar transient dipoles are also created in the walls of the activated carbon micropores. When the transient poles of the contaminants molecule and adjacent carbon atoms in the micropores “line up,” the contaminant molecule sticks to the activated carbon and is removed from the air stream. These transient electromagnetic forces are called “Van Der Walls Forces.”
For the removal of gas-phase contaminants (in gas-phase applications) activated carbon is commonly used in the form of hard granules, or hard, relatively dust-free pellets in an adsorbent bed. Activated carbon may also be incorporated in the filter material of media air filtration systems. Characteristics of activated carbon that make it desirable for air purification include:
In addition to the thermal and chemical treatments noted above, activated carbon can also be impregnated with reactants to increase the scope of contaminants that it can remove. Uses of impregnated activated carbon include:
The advantages of activated carbon include:
Disadvantages include:
Ask your Air Quality Engineering representative if activated carbon is appropriate for your application.
[i] Activated Carbon and Adsorption
F. Rodríguez-Reinoso, in Encyclopedia of Materials: Science and Technology, 2001